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Rys historyczny

Małe twierdzenie Fermata zostało sformułowane w 1640 roku przez Pierre’a de Fermata w liście do jego przyjaciela,
Frénicle’a de Bessy. Sam Fermat nie podał jednak dowodu, twierdząc, że jest on zbyt długi, by go zapisać w formie
notatki. Przez wiele lat twierdzenie pozostawało bez formalnego uzasadnienia, aż w 1736 roku pierwszy poprawny dowód
opublikował Leonhard Euler. Dopiero na początku XX wieku, około 1913 roku, zaczęto powszechnie używać nazwy „małe
twierdzenie Fermata”.

Krótkie przypomnienie kongruencji

Definicja 1 (kongruencja)

Niech a, b ∈ Z oraz niech m ∈ Z+. Mówimy, że a przystaje do b modulo m, jeśli liczba a − b dzieli się przez m.
Stosujemy oznaczenie

a ≡ b (mod m)

i nazywamy je kongruencją. Oznacza to również, że liczby a i b dają taką samą resztę z dzielenia przez m.

Kongruencje mają wiele przydatnych właściwości.

Twierdzenie 1 (własności kongruencji)

Dla a, b, c, d ∈ Z oraz m,n ∈ Z+ zachodzą poniższe zależności.

1. a ≡ a (mod m).

2. Jeśli a ≡ b (mod m), to b ≡ a (mod m).

3. Jeśli a ≡ b (mod m) oraz b ≡ c (mod m), to a ≡ c (mod m).

4. Jeśli a ≡ b (mod m), to a± c ≡ b± c (mod m).

5. Jeśli a ≡ b (mod m), to ac ≡ bc (mod m).

6. Jeśli a ≡ b (mod m) oraz c ≡ d (mod m), to a± c ≡ b± d (mod m).

7. Jeśli a ≡ b (mod m) oraz c ≡ d (mod m), to ac ≡ bd (mod m).

8. Jeśli a ≡ b (mod m), to an ≡ bn (mod m).

Twierdzenie i jego dowód

Twierdzenie 2 (MTF)

Jeżeli p jest liczbą pierwszą, to dla dowolnej liczby całkowitej a zachodzi

ap ≡ a (mod p).

Innymi słowy, jeśli p jest liczbą pierwszą, a a jest taką liczbą całkowitą, że liczby a i p są względnie pierwsze, to

ap−1 ≡ 1 (mod p).

Dowód. Gdy p = 2, sprawa jest oczywista. Załóżmy więc, że p > 2. Kongruencję ap ≡ a (mod p) udowodnimy najpierw
dla a = n ∈ N przez indukcję względem n.
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Dla n = 1 sprawdzenie jest trywialne. Z założenia indukcyjnego np ≡ n (mod p), wzoru dwumiennego oraz faktu, że dla
1 ¬ k ¬ p− 1 liczba

(
p
k

)
jest podzielna przez p dostajemy, że:

(n+ 1)p = np +
(
p

1

)
np−1 +

(
p

2

)
np−2 + · · ·+

(
p

p− 1

)
n+ 1 ≡ np + 1 ≡ n+ 1 (mod p).

To dowodzi kongruencji dla wszystkich liczb naturalnych n.
Jeśli a jest ujemną liczbą całkowitą, to wobec nieparzystości p (gdy p > 2) mamy:

ap = −(−a)p ≡ −(−a) ≡ a (mod p).

Mając ap ≡ a (mod p), czyli p | ap − a, po wykorzystaniu założenia p ∤ a (gdy chcemy przejść do postaci ap−1 ≡ 1
(mod p)), otrzymujemy p | a(ap−1 − 1), a stąd p | ap−1 − 1, co daje ap−1 ≡ 1 (mod p).

Ćwiczenie 1. Wyznacz resztę 250 (mod 7).

Ćwiczenie 2. Czy istnieje liczba całkowita n taka, że n ≡ 7 (mod 13) oraz 5n40 ≡ 12 (mod 13)?

Ćwiczenie 3. Niech a, b ∈ Z oraz p ∈ P. Udowodnić, że p | abp − apb.

Ćwiczenie 4. Niech p ∈ P oraz a ∈ Z. Udowodnić, że jeśli a2 ≡ 1 (mod p), to a ≡ ±1 (mod p).

Ćwiczenie 5. Niech p ∈ P, p > 2 oraz s = p−12 . Udowodnić, że jeśli p ∤ a, to a
s ≡ ±1 (mod p).

Zadania

Zadanie 1 (Obóz MIKO, gr. młodsza, P4). Niech n ­ 3 będzie taką liczbą naturalną, że 4n + 1 jest liczbą pierwszą.
Udowodnij, że 4n+ 1 dzieli n2n − 1.

Zadanie 2. Dla danych liczb całkowitych b i a1, a2, . . . , a20 zachodzi równość

b11 = a111 + a
11
2 + a

11
3 + . . .+ a

11
20.

Udowodnić, że iloczyn ba1a2 · . . . · a20 jest liczbą podzielną przez 23.

Zadanie 3. Udowodnić, że jeżeli 7 | x6 + y6 + z6 dla pewnych liczb całkowitych x, y, z, to 343 | xyz.

Zadanie 4. Załóżmy, że p i q to liczby pierwsze, ap ≡ a (mod q) i aq ≡ a (mod p). Udowodnić, że

apq ≡ a (mod pq).

Zadanie 5 (75OM-I-5). Dana jest dodatnia liczba całkowita dająca resztę 3 z dzielenia przez 7. Udowodnić, że suma
sześcianów jej dodatnich dzielników dzieli się przez 7.

Zadanie 6 (Rabka 2018, gr. średnia). Dane są liczby całkowite x, y oraz liczby pierwsze p, q, R, które spełniają równość

xR +R · pq = yR.

Udowodnić, że przynajmniej jedna z liczb p, q jest równa R.

Zadanie 7 (69OM-I-9). Wykazać, że dla nieskończenie wielu liczb całkowitych n > 1 równanie

(x+ 1)n+1 − (x− 1)n+1 = yn

nie ma rozwiązania w liczbach całkowitych x, y.

Zadanie 8 (Obóz OMJ 2013, poziom OM, P14). Dana jest liczba pierwsza p > 2. Wykaż, że istnieje nieskończenie wiele
takich dodatnich liczb całkowitych n, że liczba 2n − n jest podzielna przez p.

Zadanie 9 (76OM-II-2). Wyznaczyć wszystkie liczby całkowite n ­ 2 o następującej własności: liczba 2k · n − 1 jest
pierwsza dla każdego k ∈ {2, 3, . . . , n}.

Zadanie 10 (IMO 2005, P4). Wyznacz wszystkie dodatnie liczby całkowite, które są względnie pierwsze ze wszystkimi
wyrazami nieskończonego ciągu

2n + 3n + 6n − 1, n ­ 1.
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1 Rozwiązania ćwiczeń

Rozwiązanie 1. Zauważmy, że 250 = 248+2 = 4 ·
(
26
)8
oraz 26 ≡ 1 (mod 7), zatem 250 ≡ 4 · 18 = 4 (mod 7).

Rozwiązanie 2. Z MTF dostajemy, że

5n40 ≡ 5 ·
(
n12
)3 · n4 ≡ 5n4 ≡ 5 · 74 ≡ 492 · 5 ≡ (−3)2 · 5 = 45 ≡ 6 (mod 13).

Nie ma takiej liczby

Rozwiązanie 3. Zapiszmy wyrażenie w postaci

abp − apb = ab
(
bp−1 − ap−1

)
.

Jeżeli p | a lub p | b, to zarówno abp, jak i apb są podzielne przez p, a więc również ich różnica jest podzielna przez p.
Załóżmy teraz, że p ∤ a oraz p ∤ b. Wówczas na mocy MTF mamy

ap−1 ≡ 1 (mod p), bp−1 ≡ 1 (mod p).

Stąd bp−1 − ap−1 ≡ 0 (mod p). Wobec tego ab
(
bp−1 − ap−1

)
≡ 0 (mod p), czyli abp − apb ≡ 0 (mod p).

Zatem p | abp − apb, co kończy dowód.

Rozwiązanie 4. Zaczynamy od przekształcenia równania:

a2 ≡ 1 (mod p) ⇐⇒ a2 − 1 ≡ 0 (mod p) ⇐⇒ (a− 1)(a+ 1) ≡ 0 (mod p).

Ponieważ p jest liczbą pierwszą, jeśli iloczyn (a−1)(a+1) jest podzielny przez p, to przynajmniej jeden z czynników musi
być podzielny przez p. Stąd mamy dwa przypadki:

a− 1 ≡ 0 (mod p) lub a+ 1 ≡ 0 (mod p),

czyli
a ≡ 1 (mod p) lub a ≡ −1 (mod p).

Rozwiązanie 5. Z definicji s = p−12 otrzymujemy:

ap−1 = a2s ≡ 1 (mod p).

Zatem
(as)2 ≡ 1 (mod p).

Z poprzedniego zadania wiemy, że jeśli x2 ≡ 1 (mod p), to x ≡ 1 (mod p) lub x ≡ −1 (mod p). Zatem w naszym
przypadku:

as ≡ 1 (mod p) lub as ≡ −1 (mod p).

2 Rozwiązania zadań

Rozwiązanie 1. Niech p = 4n+ 1, oczywiście p ∤ n oraz p ̸= 2. Korzystając z MTF otrzymujemy

p | n4n − 1 = (n2n − 1)(n2n + 1),

więc chcemy udowodnić, że p ∤ n2n + 1. Zauważamy, że jeśli ta podzielność zachodzi, to (korzystamy z p ⊥ 2):

p | 4(n2n + 1)− (4n+ 1)n2n−1 = 4− n2n−1.

Postępując analogicznie dostajemy, że dla każdego k:

p | n2n−k + (−1)k · 4k.

W szczególności dla k = 2n zachodzi p | 1 + 42n = 1 + 24n ≡ 2 ̸= 0 (mod p), gdzie w ostatnim przystawaniu ponownie
użyliśmy MTF. Sprzeczność oznacza, że p | n2n − 1.

Rozwiązanie 2. Jeżeli jedna z liczb ai jest podzielna przez 23, to iloczyn ba1a2 . . . a20 jest podzielny przez 23 i dowód
jest zakończony.
Załóżmy więc, że liczby a1, a2, . . . , a20 nie są podzielne przez 23. Wówczas dla każdego 1 ¬ i ¬ 20, a11i jest liczbą całkowitą,
której kwadrat a22i daje resztę 1 przy dzieleniu przez 23:

a22i ≡ 1 (mod 23).
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Wobec tego
a11i ≡ ±1 (mod 23) dla każdego 1 ¬ i ¬ 20,

co wynika z ćwiczenia 4.
Jeżeli k składników sumy a111 + a

11
2 + . . .+ a

11
20 przystaje do 1 modulo 23, a 20− k pozostałych przystaje do −1 modulo

23, to
b11 = a111 + a

11
2 + . . .+ a

11
20 ≡ k − (20− k) ≡ 2k − 20 (mod 23).

Zatem b11 ≡ 2k − 20 (mod 23). Liczba 2k − 20 modulo 23 może przyjmować wartości parzyste w zakresie −20 do 20, ale
niekoniecznie ±1.
Ponieważ (z ćwiczenia 5) dla p = 23 i s = 23−12 = 11, mamy b

11 ≡ ±1 (mod 23) o ile 23 ∤ b, więc porównując z wyrażeniem
2k − 20 otrzymujemy, że

2k − 20 ≡ ±1 (mod 23).

Można sprawdzić, że równanie to nie ma rozwiązania dla całkowitych k z zakresu 0 ¬ k ¬ 20.
Wobec tego nasze założenie, że 23 ∤ b, prowadzi do sprzeczności. Zatem 23 | b, a to oznacza, że iloczyn ba1a2 . . . a20 jest
podzielny przez 23.

Rozwiązanie 3. Używając MTF wiemy, że suma x6+y6+z6 w zależności od podzielności poszczególnych wyrazów przez
7 może przyjmować wartości od 0 do 3. Ten fakt mówi, że 7 musi dzielić x, y i z żeby założenie zadania było spełnione, a
iloczyn trzech liczb podzielnych przez 7 daje liczbę podzielną przez 343.

Rozwiązanie 4. Używając Małego Twierdzenia Fermata (MTF) dostajemy:

ap ≡ a⇒ (ap)q ≡ aq ≡ a⇒ apq ≡ a (mod p)

aq ≡ a⇒ (aq)p ≡ ap ≡ a⇒ apq ≡ a (mod q)

Wynika z tego, że apq = px+ a = qy + a, ale z tego wnioskujemy, że px = qy. Można to zapisać jako x = kq, y = kp dla
k ∈ Z, więc

apq = p(qk) + a = q(pk) + a = (pq)k + a⇒ apq ≡ a (mod pq).

Rozwiązanie 5. Dodatnie dzielniki n oznaczymy przez d1, d2, . . . , dm. Ponieważ 7 ∤ n, mamy di⊥7 dla każdego dzielnika
di. Z Małego Twierdzenia Fermata dla p = 7:

d6i ≡ 1 (mod 7) =⇒ (d3i )
2 ≡ 1 (mod 7).

Stąd
d3i ≡ 1 (mod 7) lub d3i ≡ −1 (mod 7).

Liczba n = 7k+3 nie jest kwadratem, więc liczba dzielników m jest parzysta. Dzielniki możemy więc pogrupować w pary:(
di,
n

di

)
.

Zauważmy, że n3 ≡ 33 = 27 ≡ −1 (mod 7), zatem

d3i ≡ 1 oraz
(
n

di

)3
≡ −1 (mod 7) lub d3i ≡ −1 oraz

(
n

di

)3
≡ 1 (mod 7).

Dla każdej pary mamy:

d3i +
(
n

di

)3
≡ 1 + (−1) ≡ 0 (mod 7)

lub odwrotnie:

d3i +
(
n

di

)3
≡ −1 + 1 ≡ 0 (mod 7).

Zatem suma wszystkich sześcianów dzielników jest podzielna przez 7:

m∑
i=1

d3i ≡ 0 (mod 7).

Rozwiązanie 6. Wszystkie przystawania będziemy rozważać modulo R. Zauważmy, że xR ≡ yR, ale na mocy Małego
Twierdzenia Fermata mamy, że x ≡ xR oraz y ≡ yR, więc dostajemy, że x ≡ y. Zatem y − x jest podzielne przez R.
Zauważmy, że:

xR−1 + xR−2y + · · ·+ xyR−2 + yR−1 ≡ R · xR−1 ≡ 0

A zatem na mocy wzoru skróconego mnożenia R2 | yR − xR, więc R2 | R · pq, czyli R | pq. Z pierwszości R, p, q wynika
teza.
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Rozwiązanie 7. Wykażemy, że dla n = p − 1, gdzie p > 2 jest dowolną liczbą pierwszą, podane równanie nie ma
rozwiązania w liczbach całkowitych.
Załóżmy, że istnieją takie liczby całkowite x, y, że zachodzi równość

(x+ 1)p − (x− 1)p = yp−1.

Z małego twierdzenia Fermata wynika, że

p | (x+ 1)p − (x+ 1) oraz p | (x− 1)p − (x− 1).

Wobec tego
p | (x+ 1)p − (x+ 1)−

(
(x− 1)p − (x− 1)

)
= (x+ 1)p − (x− 1)p − 2 = yp−1 − 2.

Stąd otrzymujemy podzielność
p | y(yp−1 − 2) = yp − 2y.

Ponownie korzystając z małego twierdzenia Fermata dostajemy, że p | yp − y, co wraz z poprzednią podzielnością daje
p | y — sprzeczność z tym, że p | yp−1 − 2.

Rozwiązanie 8. Dla dowolnej dodatniej liczby naturalnej k przyjmijmy nk = (p − 1)(kp − 1). Wówczas na podstawie
małego twierdzenia Fermata otrzymujemy

2nk − nk = 2(p−1)(kp−1) − (p− 1)(kp− 1) ≡ 1kp−1 − (−1) · (−1) ≡ 1− 1 ≡ 0 (mod p),

skąd wynika, że ciąg liczb {nk}k∈N zdefiniowany powyższym wzorem spełnia warunki zadania.

Rozwiązanie 9. Liczby n = 2 i n = 3 spełniają warunki zadania, bowiem liczby

22 · 2− 1 = 7, 22 · 3− 1 = 11, 23 · 3− 1 = 23

są pierwsze. Poniżej wykażemy, że liczby n ­ 4 nie spełniają warunków zadania.
Jeśli n ­ 4 jest liczbą parzystą, to n − 1 jest nieparzystą liczbą większą lub równą 3, a więc ma nieparzysty dzielnik
pierwszy p. Wówczas

2 ¬ p− 1 ¬ n.

Z małego twierdzenia Fermata wynika, że

2p−1 · n− 1 ≡ 2p−1 − 1 ≡ 0 (mod p),

więc 2p−1 · n− 1 dzieli się przez p. Liczba ta jest większa od p, więc jest złożona. Stąd n nie spełnia warunków zadania.
Jeśli n ­ 5 jest liczbą nieparzystą, to liczba n − 2 jest nieparzystą liczbą większą lub równą 3, a więc ma nieparzysty
dzielnik pierwszy p. Jeśli p = 3, to liczba 23 · n− 1 = 8(n− 2)+ 15 dzieli się przez 3 i jest większa od 3, jest więc złożona.
W przeciwnym razie p ­ 5, wtedy 2 ¬ p− 2 ¬ n. Z małego twierdzenia Fermata wynika, że

2p−2 · n− 1 ≡ 2p−2 · 2− 1 ≡ 2p−1 − 1 ≡ 0 (mod p),

więc 2p−2 · n− 1 dzieli się przez p. Jest to liczba większa od p, więc jest złożona. Zatem n nie spełnia warunków zadania.

Rozwiązanie 10. Odpowiedzią jest 1. Pokażemy, że każda liczba pierwsza p dzieli pewien wyraz tego ciągu. Dla p = 2
wystarczy n = 1, a dla p = 3 wystarczy n = 2.
Dla p ̸= 2, 3 rozważmy n = p− 2. Z Małego Twierdzenia Fermata mamy:

6
(
2p−2 + 3p−2 + 6p−2 − 1

)
= 3 · 2p−1 + 2 · 3p−1 + 6p−1 − 6 ≡ 3 + 2 + 1− 6 ≡ 0 (mod p).

Ponieważ p nie dzieli 6 (bo p ̸= 2, 3), otrzymujemy:

p | 2p−2 + 3p−2 + 6p−2 − 1.

Zatem jedyną liczbą względnie pierwszą ze wszystkimi wyrazami ciągu jest 1.

5


	Rozwiązania ćwiczeń
	Rozwiązania zadań

